Optimizing beat-wise input for arrhythmia detection using 1-D convolutional neural networks: A real-world ECG study
Published in Computer Methods and Programs in Biomedicine, 2025
Cardiac arrhythmias, characterized by irregular heartbeats, are difficult to diagnose in real-world scenarios. Machine learning has advanced arrhythmia detection; however, the optimal number of heartbeats for precise classification remains understudied. This study addresses this using machine learning while assessing the performance of arrhythmia detection across inter-patient and intra-patient conditions. Furthermore, the performance–resource trade-offs are evaluated for practical deployment in mobile health (mHealth) applications. Beat-wise segmentation and resampling techniques were utilized for preprocessing electrocardiography (ECG) signals to ensure consistent input lengths. A 1-D convolutional neural network was used to classify the eight multi-labeled arrhythmias. The dataset comprised real-world ECG recordings from the HiCardi wireless device alongside data from the MIT-BIH Arrhythmia database. Model performance was assessed through fivefold cross-validation under both inter-patient and intra-patient conditions.